Pressure Drop Dynamics during Filtration of Mixture Aerosol Containing Water, Oil, and Soot Particles on Nonwoven Filters

Author:

Kamiński Mateusz1ORCID,Gac Jakub M.1ORCID,Sobiech Piotr2ORCID,Kozikowski Paweł2ORCID,Jankowski Tomasz2ORCID

Affiliation:

1. Faculty of Chemical and Process Engineering, Warsaw University of Technology, ul. Waryńskiego 1, 00-645 Warsaw, Poland

2. Central Institute for Labour Protection-National Research Institute, ul. Czerniakowska 16, 00-701 Warsaw, Poland

Abstract

The pressure drop dynamics during the filtration of three-component mixture aerosols are investigated and compared with two and single-component aerosols. The main area of interest is the effect of the addition of a small quantity of liquid (oil) and solid (soot) particles during the filtration of aerosol containing water mist. In addition, calculations of the change in filter mass during oil aerosol filtration have been carried out and compared with the experimental results. The new, improved filtration efficiency model takes into account a better coefficient fitting in the filtration mechanism equations. The limitations in the change in fibre diameter and packing density resulting from the filter loading have been implemented in the model. Additionally, the calculation model employs the fibre size distribution representation via multiple average fibre diameters. The changes in fibre diameter are dependent on each fibre’s calculated filtration efficiency. The improved filtration model has been utilised to predict the mass change of the filters during the filtration of pure and mixture aerosols. The pressure drop calculation model based on changes in filter mass has been formulated. The model is then utilised to calculate pressure drop changes resulting from the filtration of the oil aerosol and water and oil mixture aerosol.

Funder

Ministry of Family and Social Policy

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3