Effect of the Simultaneous Addition of Polycaprolactone and Carbon Nanotubes on the Mechanical, Electrical, and Adhesive Properties of Epoxy Resins Cured with Ionic Liquids

Author:

Orduna Lidia1ORCID,Otaegi Itziar1ORCID,Aranburu Nora1ORCID,Guerrica-Echevarría Gonzalo1ORCID

Affiliation:

1. POLYMAT and Department of Advanced Polymers and Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country (UPV/EHU), Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastian, Spain

Abstract

Electrically-conductive epoxy nanocomposites (NCs) with improved mechanical and adhesive properties were achieved through the combined addition of poly(ε-caprolactone) (PCL) and carbon nanotubes (CNTs). Three different ionic liquids (ILs) were used as dual role agents, i.e., as both curing and dispersing agents. Regardless of the IL used, the epoxy/PCL matrix of the NCs showed a single-phase behaviour and similar glass transition (Tg) and crosslinking density (νe) values to the unfilled epoxy/PCL/IL systems. Although the CNTs were more poorly dispersed in the epoxy/PCL/CNT/IL NCs than in the reference epoxy/CNT/IL NCs, which led to slightly lower electrical conductivity values, the epoxy/PCL/CNT/IL NCs were still semiconductive. Their low-strain mechanical properties (i.e., flexural modulus and flexural strength) were similar or better than those of the reference epoxy/IL systems and their high-strain mechanical properties (i.e., deformation at break and impact strength) were significantly better. In addition, the positive effects of the PCL and the CNTs on the adhesive properties of the epoxy/IL system were combined. The substitution of ILs for traditional amine-based curing agents and biodegradable PCL for part of the epoxy resin represents an important advance on the road towards greater sustainability.

Funder

Ministerio de Economía y Competitividad

Basque Government

University of the Basque Country

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3