Hybrid Epoxy Nanocomposites: Improvement in Mechanical Properties and Toughening Mechanisms—A Review

Author:

Białkowska Anita1,Bakar Mohamed1,Kucharczyk Wojciech2,Zarzyka Iwona3ORCID

Affiliation:

1. Faculty of Chemical Engineering, University of Technology and Humanities, 26-600 Radom, Poland

2. Faculty of Mechanical Engineering, University of Technology and Humanities, 26-600 Radom, Poland

3. Faculty of Chemistry, Rzeszów University of Technology, 35-959 Rzeszów, Poland

Abstract

This article presents a review on the recent advances in the field of ternary diglycidyl ether of bisphenol A epoxy nanocomposites containing nanoparticles and other modifiers. Particular attention is paid to their mechanical and thermal properties. The properties of epoxy resins were improved by incorporating various single toughening agents, in solid or liquid states. This latter process often resulted in the improvement in some properties at the expense of others. The use of two appropriate modifiers for the preparation of hybrid composites, possibly will show a synergistic effect on the performance properties of the composites. Due to the huge amount of modifiers that were used, the present paper will focus mainly on largely employed nanoclays with modifiers in a liquid and solid state. The former modifier contributes to an increase in the flexibility of the matrix, while the latter modifier is intended to improve other properties of the polymer depending on its structure. Various studies which were carried out on hybrid epoxy nanocomposites confirmed the occurrence of a synergistic effect within the tested performance properties of the epoxy matrix. Nevertheless, there are still ongoing research works using other nanoparticles and other modifiers aiming at enhancing the mechanical and thermal properties of epoxy resins. Despite numerous studies carried out so far to assess the fracture toughness of epoxy hybrid nanocomposites, some problems still remain unresolved. Many research groups are dealing with many aspects of the subject, namely the choice of modifiers and preparation methods, while taking into account the protection of the environment and the use of components from natural resources.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3