Genetic Variance Estimation over Time in Broiler Breeding Programmes for Growth and Reproductive Traits

Author:

Sosa-Madrid Bolívar Samuel12ORCID,Maniatis Gerasimos3,Ibáñez-Escriche Noelia2ORCID,Avendaño Santiago3,Kranis Andreas13ORCID

Affiliation:

1. The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK

2. Institute for Animal Science and Technology, Universitat Politècnica de València, P.O. Box 2201, 46071 Valencia, Spain

3. Aviagen Ltd., Newbridge, Edinburgh EH28 8SZ, UK

Abstract

Monitoring the genetic variance of traits is a key priority to ensure the sustainability of breeding programmes in populations under directional selection, since directional selection can decrease genetic variation over time. Studies monitoring changes in genetic variation have typically used long-term data from small experimental populations selected for a handful of traits. Here, we used a large dataset from a commercial breeding line spread over a period of twenty-three years. A total of 2,059,869 records and 2,062,112 animals in the pedigree were used for the estimations of variance components for the traits: body weight (BWT; 2,059,869 records) and hen-housed egg production (HHP; 45,939 records). Data were analysed with three estimation approaches: sliding overlapping windows, under frequentist (restricted maximum likelihood (REML)) and Bayesian (Gibbs sampling) methods; expected variances using coefficients of the full relationship matrix; and a “double trait covariances” analysis by computing correlations and covariances between the same trait in two distinct consecutive windows. The genetic variance showed marginal fluctuations in its estimation over time. Whereas genetic, maternal permanent environmental, and residual variances were similar for BWT in both the REML and Gibbs methods, variance components when using the Gibbs method for HHP were smaller than the variances estimated when using REML. Large data amounts were needed to estimate variance components and detect their changes. For Gibbs (REML), the changes in genetic variance from 1999–2001 to 2020–2022 were 82.29 to 93.75 (82.84 to 93.68) for BWT and 76.68 to 95.67 (98.42 to 109.04) for HHP. Heritability presented a similar pattern as the genetic variance estimation, changing from 0.32 to 0.36 (0.32 to 0.36) for BWT and 0.16 to 0.15 (0.21 to 0.18) for HHP. On the whole, genetic parameters tended slightly to increase over time. The expected variance estimates were lower than the estimates when using overlapping windows. That indicates the low effect of the drift-selection process on the genetic variance, or likely, the presence of genetic variation sources compensating for the loss. Double trait covariance analysis confirmed the maintenance of variances over time, presenting genetic correlations >0.86 for BWT and >0.82 for HHP. Monitoring genetic variance in broiler breeding programmes is important to sustain genetic progress. Although the genetic variances of both traits fluctuated over time, in some windows, particularly between 2003 and 2020, increasing trends were observed, which warrants further research on the impact of other factors, such as novel mutations, operating on the dynamics of genetic variance.

Funder

Margarita Salas grant from funds of the European Union (NextGenerationEU) that are regulated by the “Ministerio de Universidades” of Spain

BBSRC

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

Reference60 articles.

1. Walsh, B., and Lynch, M. (2018). Evolution and Selection of Quantitative Traits, Oxford University Press.

2. Charlesworth, B., and Charlesworth, D. (2010). Elements of Evolutionary Genetics, Roberts and Company Publishers.

3. The Effect of Selection on Genetic Variability;Bulmer;Am. Nat.,1971

4. Falconer, D.S., and Mackay, T.F. (1996). Introduction to Quantitative Genetics, Longman. [4th ed.].

5. The Impact of Genomic and Traditional Selection on the Contribution of Mutational Variance to Long-Term Selection Response and Genetic Variance;Mulder;Genetics,2019

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3