Abnormal Effect of Al on the Phase Stability and Deformation Mechanism of Ti-Zr-Hf-Al Medium-Entropy Alloys

Author:

Yuan Penghao1,Wang Lu1ORCID,Liu Ying1,Hui Xidong2

Affiliation:

1. School of Materials Science and Engineering, Sichuan University, Chengdu 610065, China

2. State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China

Abstract

Complex concentrated alloys, including high-entropy alloys (HEAs) and medium-entropy alloys (MEAs), offer another pathway for developing metals with excellent mechanical properties. However, HEAs/MEAs of different structures often suffer from various drawbacks. So, investigations on the effect of phase and microstructure on their properties become necessary. In the present work, we adjust the phase constitution and microstructure by Al addition in a series of (Ti2ZrHf)100−xAlx (x = 12, 14, 16, 18, 20, at.%, named Alx) MEAs. Different from traditional titanium, Al shows a β-stabilizing effect, and the phase follows the evolution of α′(α)→α″→β + ω + B2 with Al increasing from 12 to 20 at.%, which could not be predicted by the CALPHAD (Calculate Phase Diagrams) method or the Bo-Md diagram because of the complex interactions among composition elements. At a low Al content, the solid solution strengthening of the HCP phase contributes to the extremely high strength with a σ0.2 of 1528 MPa and σb of 1937 MPa for Al14. The appearance of α″ deteriorates the deformation capability with increasing Al content in the Al16 and Al18 MEAs. In the Al20 MEA, Al improves the formations of ordered B2 and metastable β. The phase transformation strengthening, including B2 to BCC and BCC to α″, together with the precipitation strengthening of ω, brings about a high work-hardening ratio (above 5 GPa) and improvements in ductility (6.8% elongation). This work provides guidelines for optimizing the properties of MEAs.

Funder

The National Natural Science Foundation of China

Publisher

MDPI AG

Reference31 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3