Enhancing Manufacturing Processing Stability and Efficiency with Linear-Regression Analysis: Modeling on a Flow-Drill Screw (FDS) Joining Process

Author:

Zhang Chengxin1ORCID,Guzman Mario2,Zhao Xuzhe3

Affiliation:

1. Department of Industrial and Manufacturing Systems Engineering, University of Michigan-Dearborn, Dearborn, MI 48128, USA

2. Arnold Fastening Systems, Rochester Hills, MI 48309, USA

3. Ford Motor Company, Dearborn, MI 48124, USA

Abstract

The instability (in processing time) in the flow-drill screwing process is undesired but inescapable due to variations in material property, gauge, and process parameters. A substantial number of materials and lab labor need to be used to test and control the variability of the real manufacturing joining process. To enhance the stability and efficiency of the screwing process, this study seeks multi-disciplinary collaboration by applying linear-regression modeling. Six hundred and forty-eight data points were collected and split into an 80% training set for model building and a 20% test set for model validation. A multiple linear-regression model was built. The results indicated that, compared to variable base level (6000 rpm rotational speed and 1100 N downforce), higher rotational speed (8000 rpm, 7000 rpm), greater downforce (1200 N, 1300 N), and their interaction were significantly associated with passage (processing) time, while the switch point did not significantly affect passage time. The interaction plot and effect size were adopted to provide measurements of the effect magnitude on processing time. The coefficient of determination indicated that 86% of the variability in the passage time can be explained by this model. Statistical analysis, such as data visualization, statistical modeling, and other data-driven analysis methods, can be used to detect underlying relationships between variables, investigate variations, and make predictions in the manufacturing process. The outcomes from the data-driven analysis can benefit from improving the economical manufacturing system, refining the processing setting, and reducing test material costs, labor, and lead time.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3