Employing Active Learning in Medium Optimization for Selective Bacterial Growth

Author:

Zhang Shuyang1,Aida Honoka1,Ying Bei-Wen1ORCID

Affiliation:

1. School of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8572, Ibaraki, Japan

Abstract

Medium optimization and development for selective bacterial cultures are essential for isolating and functionalizing individual bacteria in microbial communities; nevertheless, it remains challenging due to the unknown mechanisms between bacterial growth and medium components. The present study first tried combining machine learning (ML) with active learning to fine-tune the medium components for the selective culture of two divergent bacteria, i.e., Lactobacillus plantarum and Escherichia coli. ML models considering multiple growth parameters of the two bacterial strains were constructed to predict the fine-tuned medium combinations for higher specificity of bacterial growth. The growth parameters were designed as the exponential growth rate (r) and maximal growth yield (K), which were calculated according to the growth curves. The eleven chemical components in the commercially available medium MRS were subjected to medium optimization and specialization. High-throughput growth assays of both strains grown separately were performed to obtain thousands of growth curves in more than one hundred medium combinations, and the resultant datasets linking the growth parameters to the medium combinations were used for the ML training. Repeated rounds of active learning (i.e., ML model construction, medium prediction, and experimental verification) successfully improved the specific growth of a single strain out of the two. Both r and K showed maximized differentiation between the two strains. A further analysis of all the data accumulated in active learning identified the decision-making medium components for growth specificity and the differentiated, determinative manner of growth decisions of the two strains. In summary, this study demonstrated the efficiency and practicality of active learning in medium optimization for selective cultures and offered novel insights into the contribution of the chemical components to specific bacterial growth.

Funder

JSPS KAKENHI Grant-in-Aid for Challenging Exploratory Research

JSPS KAKENHI Grant-in-Aid for Scientific Research

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3