Longitudinal Sequencing and Variant Detection of SARS-CoV-2 across Southern California Wastewater

Author:

Rothman Jason A.1ORCID,Saghir Andrew1,Zimmer-Faust Amity G.2,Langlois Kylie2,Raygoza Kayla12,Steele Joshua A.2ORCID,Griffith John F.2,Whiteson Katrine L.1ORCID

Affiliation:

1. Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA

2. Southern California Coastal Water Research Project, University of California, Costa Mesa, CA 92697, USA

Abstract

Wastewater-based epidemiology (WBE) is useful for detecting pathogen prevalence and may serve to effectively monitor diseases across broad scales. WBE has been used throughout the COVID-19 pandemic to track disease burden through quantifying SARS-CoV-2 RNA present in wastewater. Aside from case load estimation, WBE is being used to assay viral genomic diversity and emerging potential SARS-CoV-2 variants. Here, we present a study in which we sequenced RNA extracted from sewage influent obtained from eight wastewater treatment plants representing 16 million people in Southern California from April 2020 to August 2021. We sequenced SARS-CoV-2 with two methods: Illumina Respiratory Virus-Enriched metatranscriptomic sequencing (N = 269), and QIAseq SARS-CoV-2-tiled amplicon sequencing (N = 95). We classified SARS-CoV-2 reads into lineages and sublineages that approximated named variants and identified single nucleotide variants (SNVs), of which many are putatively novel SNVs and SNVs of unknown potential function and prevalence. Through our retrospective study, we also show that several SARS-CoV-2 sublineages were detected in wastewater before clinical detection, which may assist in the prediction of future variants of concern. Lastly, we show that sublineage diversity was similar across Southern California and that diversity changed over time, indicating that WBE is effective across megaregions. As the COVID-19 pandemic moves to new phases, and SARS-CoV-2 variants emerge, monitoring wastewater is important to understand local- and population-level dynamics of the virus. These results will aid in our ability to monitor the evolutionary potential of SARS-CoV-2 and help understand circulating SNVs to further combat COVID-19.

Funder

University of California Office of the President Research Grants Program Office

Hewitt Foundation for Biomedical Research postdoctoral fellowship

Cancer Center Support Grant

NIH shared instrumentation grants

UCI High-Performance Community Computing Cluster

Publisher

MDPI AG

Reference72 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3