The Effect of Manure Application Rates on the Vertical Distribution of Antibiotic Resistance Genes in Farmland Soil

Author:

Wang Yuqian12,Yang Liqiong1,Liu Weipeng1,Zhuang Jie3ORCID

Affiliation:

1. Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China

2. University of Chinese Academy of Sciences, Beijing 100039, China

3. Department of Biosystems Engineering and Soil Science, Institute for a Secure and Sustainable Environment, The University of Tennessee, Knoxville, TN 37996, USA

Abstract

Manure application is the primary input route for antibiotic resistance genes (ARGs) in farmland soil. This study investigated the effects of varying the rates of five chicken manure applications on the accumulation and distribution of ARGs across different soil depths (0–20, 20–40, and 40–60 cm) using metagenomic sequencing. The results revealed that the distribution of ARGs in farmland soil was closely linked to soil depth and influenced to some extent by the fertilizer quantity after 30 days of fertilization. ARGs were predominantly concentrated in the surface soil and exhibited a significant decrease in type and abundance with an increased soil depth. Compared with soil treated with chemical fertilizers alone, chicken manure-treated surface soil presented a higher diversity and abundance of ARGs. However, the diversity and abundance of ARGs did not increase proportionally with the increasing ratios of chicken manure application (0, 25, 50, 75, and 100%). ARGs in soil primarily conferred resistance to host bacteria through antibiotic efflux pumps (~33%), antibiotic target alteration (~31%), antibiotic inactivation (~20%), and antibiotic target protection (~8%). Correlation analysis involving ARGs and soil microorganisms revealed widespread multidrug resistance among soil microorganisms. Furthermore, two genera of human pathogenic bacteria (Pseudomonas sp. and Listeria sp.) were identified as potential microbial hosts of ARGs in all treatments. Correlation analysis involving ARGs and environmental factors indicated that soil ARGs are predominantly influenced by heavy metals and microorganisms. This paper offers valuable insights for environmental risk assessments regarding the utilization of livestock manure resources. Additionally, it furnishes a scientific foundation for farmland application strategies pertaining to livestock manure.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Reference81 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3