Enhancing Corn Yield and Soil Quality in Irrigated Semiarid Region with Coal Char and Biochar Amendments

Author:

Thapa Resham B.12,Budhathoki Samir3ORCID,Shilpakar Chandan4,Panday Dinesh5ORCID,Alsunuse Bouzeriba2,Tang Sean X.3,Stahl Peter D.2

Affiliation:

1. Center for Carbon Capture & Conversion, School of Energy Resources, University of Wyoming, Laramie, WY 82071, USA

2. Department of Ecosystem Science & Management, University of Wyoming, Laramie, WY 82071, USA

3. Department of Energy & Petroleum Engineering, University of Wyoming, Laramie, WY 82071, USA

4. Department of Plant Sciences, University of Wyoming, Laramie, WY 82071, USA

5. Rodale Institute, Kutztown, PA 19530, USA

Abstract

Sustainable use of croplands is facing a challenge to maintain organic carbon (C) in soil. Pyrolyzed coal or coal char (CC) is a porous C material produced from the pyrolysis of coal containing high organic C, large surface area, and low bulk density like biochar (BC). This study evaluates corn (Zea mays L.) grain yield and selected soil properties in soil amended with CC and BC at two rates (22 and 44 Mg ha−1) with farmyard manure (FM) (66 Mg ha−1) and without FM addition. This field experiment was performed in sandy loam soil at the University of Wyoming’s Sustainable Agricultural Research and Extension Center (SAREC), Lingle, WY, USA. Two years of field study results indicated CC and BC applied at 22 Mg ha−1 with FM resulted in significantly greater average corn grain yields (13.04–13.57 Mg ha−1) compared to the no char’s treatment (11.42 Mg ha−1). Soil organic matter (SOM) content was significantly greater in the higher application rates of CC and BC than in treatments without chars. Overall, soil nitrate nitrogen (NO3-N), phosphorous (P), and potassium (K) were found significantly greater in CC and BC co-applied with FM treatments. Soil water-holding capacity (WHC) significantly improved in sandy loam soil (up to 27.6% more than the no-char treatment) at a greater concentration of char materials. This study suggests that char materials applied at a moderate rate (22 Mg ha−1) with FM can improve soil properties and crop yield.

Funder

School of Energy Resources, University of Wyoming

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3