Event Related Potential Signal Capture Can Be Enhanced through Dynamic SNR-Weighted Channel Pooling

Author:

Hajra Sujoy Ghosh,Liu Careesa C.ORCID,Fickling Shaun D.,Pawlowski Gabriela M.,Song Xiaowei,D’Arcy Ryan C. N.

Abstract

Background: Electroencephalography (EEG)-derived event-related potentials (ERPs) provide information about a variety of brain functions, but often suffer from low inherent signal-to-noise ratio (SNR). To overcome the low SNR, techniques that pool data from multiple sensors have been applied. However, such pooling implicitly assumes that the SNR among sensors is equal, which is not necessarily valid. This study presents a novel approach for signal pooling that accounts for differential SNR among sensors. Methods: The new technique involves pooling together signals from multiple EEG channels weighted by their respective SNRs relative to the overall SNR of all channels. We compared ERP responses derived using this new technique with those derived using both individual channels as well as traditional averaged-based channel pooling. The outcomes were evaluated in both simulated data and real data from healthy adult volunteers (n = 37). Responses corresponding to a range of ERP components indexing auditory sensation (N100), attention (P300) and language processing (N400) were evaluated. Results: Simulation results demonstrate that, compared to traditional pooling technique, the new SNR-weighted channel pooling technique improved ERP response effect size in cases of unequal noise among channels (p’s < 0.001). Similarly, results from real-world experimental data showed that the new technique resulted in significantly greater ERP effect sizes compared to either traditional pooling or individual channel approach for all three ERP components (p’s < 0.001). Furthermore, the new channel pooling approach also resulted in larger ERP signal amplitudes as well as greater differences among experimental conditions (p’s < 0.001). Conclusion: These results suggest that the new technique improves the capture of ERP responses relative to traditional techniques. As such, SNR-weighted channel pooling can further enable widespread applications of ERP techniques, especially those that require rapid assessments in noisy out-of-laboratory environments.

Funder

Canadian Institutes of Health Research

Natural Sciences and Engineering Research Council of Canada

Canada Foundation for Innovation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3