Autonomous Crack Detection for Mountainous Roads Using UAV Inspection System

Author:

Chen Xinbao12ORCID,Wang Chenxi2,Liu Chang2,Zhu Xiaodong2,Zhang Yaohui2,Luo Tianxiang2,Zhang Junhao2

Affiliation:

1. Sanya Research Institute, Hunan University of Science and Technology, Sanya 572025, China

2. School of Earth Sciences and Spatial Information Engineering, Hunan University of Science and Technology, Xiangtan 411201, China

Abstract

Road cracks significantly affect the serviceability and safety of roadways, especially in mountainous terrain. Traditional inspection methods, such as manual detection, are excessively time-consuming, labor-intensive, and inefficient. Additionally, multi-function detection vehicles equipped with diverse sensors are costly and unsuitable for mountainous roads, primarily because of the challenging terrain conditions characterized by frequent bends in the road. To address these challenges, this study proposes a customized Unmanned Aerial Vehicle (UAV) inspection system designed for automatic crack detection. This system focuses on enhancing autonomous capabilities in mountainous terrains by incorporating embedded algorithms for route planning, autonomous navigation, and automatic crack detection. The slide window method (SWM) is proposed to enhance the autonomous navigation of UAV flights by generating path planning on mountainous roads. This method compensates for GPS/IMU positioning errors, particularly in GPS-denied or GPS-drift scenarios. Moreover, the improved MRC-YOLOv8 algorithm is presented to conduct autonomous crack detection from UAV imagery in an on/offboard module. To validate the performance of our UAV inspection system, we conducted multiple experiments to evaluate its accuracy, robustness, and efficiency. The results of the experiments on automatic navigation demonstrate that our fusion method, in conjunction with SWM, effectively enables real-time route planning in GPS-denied mountainous terrains. The proposed system displays an average localization drift of 2.75% and a per-point local scanning error of 0.33 m over a distance of 1.5 km. Moreover, the experimental results on the road crack detection reveal that the MRC-YOLOv8 algorithm achieves an F1-Score of 87.4% and a mAP of 92.3%, thus surpassing other state-of-the-art models like YOLOv5s, YOLOv8n, and YOLOv9 by 1.2%, 1.3%, and 3.0% in terms of mAP, respectively. Furthermore, the parameters of the MRC-YOLOv8 algorithm indicate a volume reduction of 0.19(×106) compared to the original YOLOv8 model, thus enhancing its lightweight nature. The UAV inspection system proposed in this study serves as a valuable tool and technological guidance for the routine inspection of mountainous roads.

Funder

the Ministry of education of Humanities and Social Science project

Chinese national college students innovation and entrepreneurship training program

Hunan province college students innovation and entrepreneurship training program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3