The Advantage of Citrus Residues as Feedstock for Biogas Production: A Two-Stage Anaerobic Digestion System

Author:

Guerrero-Martin Camilo Andrés12ORCID,Rojas-Sanchez Angie Natalia3,Cruz-Pinzón David Fernando3ORCID,Milquez-Sanabria Harvey Andres3ORCID,Sotelo-Tobon David Leonardo3,da Cunha Ana Laura Ribeiro12,Salinas-Silva Raúl4,Camacho-Galindo Stefanny4,Costa Gomes Vando José12,Cunha Malagueta Diego56ORCID

Affiliation:

1. Energy and Sea Research Group (Grupo de Pesquisa em Energia e Mar), Universidade Federal do Pará, Campus Universitário de Salinópolis, Salinópolis-Pará 68721-000, Brazil

2. Department of Engineering, Federal University of Pará—Campus Salinópolis, Rua Raimundo Santana Cruz, S/N, Bairro São Tomé, Salinópolis 68721-000, Brazil

3. Non-Conventional Separation Processes Research Group (GPS), Department of Chemical and Environmental Engineering, Faculty of Engineering, Universidad de América, Av. Circunvalar #20-53, Bogotá 110311, Colombia

4. Fundación de Educación Superior San José—Usanjose, Bogotá 110311, Colombia

5. Mechanical Engineering (IPoli/UFRJ) and Energy Planning (Coppe/UFRJ), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil

6. Climate and Energy (PPGC&E/UENF), Universidade Estadual do Norte Fluminense, Rio de Janeiro 28013-602, Brazil

Abstract

Anaerobic digestion (AD) is an important step in waste recovery. In Colombia, the production of citrus food significantly contributes to environmental impact via waste generation. In 2021, the waste produced, specifically citrus rind, amounted to 725,035 tons/year. During degradation, wastes generate leachate and greenhouse gases (GHGs), which negatively impact water sources (leachate), soil, and human and animal health. This article describes the design of a two-phase biodigestion system for the degradation of organic matter and biogas production. The system uses citrus waste to produce biogas with neutral emissions. The biodigestion process begins with the stabilization of the methanogenesis reactor (UASB), which takes approximately 19 days. During this period, the biogas produced contains approximately 60% methane by volume. Subsequently, the packed bed reactor operates for 7 days, where hydrolytic and acetogenic bacteria decompose the citrus waste, leading to the production and accumulation of volatile fatty acids. The final step involves combining the two phases for 5 days, resulting in a daily biogas production ranging from 700 to 1100 mL. Of this biogas, 54.90% is methane (CH4) with a yield of 0.51 LCH4gSV−1. This study assesses the methane production capacity of citrus waste, with the process benefiting from the pH value of the leachate, enhancing its degradability. Consequently, this approach leads to a notable 27.30% reduction in solids within the digestion system. The two-phase anaerobic biodigestion system described in this article demonstrates a promising method to mitigate the environmental impact of citrus waste while concurrently producing a renewable source of energy.

Funder

Universidad de America grant

PROPESP/UFPA

Publisher

MDPI AG

Reference52 articles.

1. Bogota_Environmental_Observatory (2023, November 12). Zero Waste Program (Programa Basura Cero), Available online: https://www.uaesp.gov.co/uaesp_jo/images/BasuraCero/DocumentoBasuraCero.pdf.

2. Ministry_of_Agriculture_and_Rural_Development (2023, October 20). Citrus Chain, Indicators and Instruments Second Quarter 2021 (Cadena de Citricos, Indicadores e Instrumentos Segundo Trimestre 2021), Available online: https://sioc.minagricultura.gov.co/Citricos/Documentos/2021-03-31%20Cifras%20Sectoriales.pdf.

3. Guerrero-Martin, C.A., Fernández-Ramírez, J.S., Arturo-Calvache, J.E., Milquez-Sanabria, H.A., Fernandes, F.A.d.S., Gomes, V.J.C., e Silva, W.L., Duarte, E.D.V., Guerrero-Martin, L.E., and Lucas, E.F. (2023). Exergy Load Distribution Analysis Applied to the Dehydration of Ethanol by Extractive Distillation. Energies, 16.

4. Exergy and emergy: Complementary tools for assessing the environmental sustainability use of biosolids generated in wastewater-treatment plant for energy-production;Cano;Química Nova,2022

5. Ibañez-Gómez, L.F., Albarracín-Quintero, S., Céspedes-Zuluaga, S., Montes-Páez, E., Junior, O.H.A., Carmo, J.P., Ribeiro, J.E., Moreira, M.M.A., Siqueira, A.A.G., and Guerrero-Martin, C.A. (2022). Process Optimization of the Flaring Gas for Field Applications. Energies, 15.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3