Recycled Materials in Construction: Trends, Status, and Future of Research

Author:

Wu Jiawei1,Ye Xunrong1,Cui Huachun1

Affiliation:

1. School of Design, Jiangnan University, Wuxi 214122, China

Abstract

The utilization of recycled materials has emerged as a pivotal strategy for mitigating resource depletion and reducing carbon emissions in the construction industry. However, existing reviews predominantly focus on specific technical aspects, often overlooking the interdisciplinary complexities associated with recycled materials as a systems engineering challenge. This study systematically reviews 1533 documents from the Web of Science Core Collection, integrating quantitative and qualitative analytical approaches to assess the current state and future trajectory of the field, thereby addressing existing research gaps. The findings highlight the substantial evolution of recycled building materials from waste recovery to a multifaceted domain encompassing value assessment, circular economy principles, advanced technologies, interdisciplinary collaboration, and long-term societal benefits. This study identifies six key research themes in recycled building materials: life cycle assessment, biological and natural materials, recycled concrete, recycled asphalt and building infrastructure, construction and demolition waste, and environmental impacts with composite factors. Furthermore, current research is categorized into two primary dimensions: value strategies and technological tools. The analysis of future research directions underscores the potential of AI-driven innovations and their role in enhancing human living environments. However, developing countries continue to face critical challenges, necessitating further interdisciplinary integration and knowledge exchange. Finally, this study proposes a comprehensive and systematic disciplinary framework that offers valuable insights for future strategic planning and technological advancements in the field.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3