Challenges and Prospects of Plant-Protein-Based 3D Printing

Author:

Mittal Shivani1,Bhuiyan Md. Hafizur Rahman1ORCID,Ngadi Michael O.1ORCID

Affiliation:

1. Department of Bioresource Engineering, McGill University, 21111 Lakeshore Road, Sainte Anne de Bellevue, QC H9X 3V9, Canada

Abstract

Three-dimensional (3D) printing is a rapidly developing additive manufacturing technique consisting of the deposition of materials layer-by-layer to produce physical 3D structures. The technique offers unique opportunities to design and produce new products that cater to consumer experience and nutritional requirements. In the past two decades, a wide range of materials, especially plant-protein-based materials, have been documented for the development of personalized food owing to their nutritional and environmental benefits. Despite these benefits, 3D printing with plant-protein-based materials present significant challenges because there is a lack of a comprehensive study that takes into account the most relevant aspects of the processes involved in producing plant-protein-based printable items. This review takes into account the multi-dimensional aspects of processes that lead to the formulation of successful printable products which includes an understanding of rheological characteristics of plant proteins and 3D-printing parameters, as well as elucidating the appropriate concentration and structural hierarchy that are required to maintain stability of the substrate after printing. This review also highlighted the significant and most recent research on 3D food printing with a wide range of plant proteins. This review also suggests a future research direction of 3D printing with plant proteins.

Funder

Natural Science and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3