Antioxidant Effects and Probiotic Properties of Latilactobacillus sakei MS103 Isolated from Sweet Pickled Garlic

Author:

Li Heng12,Chen Changlin1,Li Yuanxin2,Li Zhengqiang2ORCID,Li Chen3,Luan Chang24

Affiliation:

1. College of Information Technology, Jilin Agricultural University, Chuangchun 130118, China

2. Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Sciences, Jilin University, Changchun 130012, China

3. State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China

4. State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China

Abstract

Fermented vegetable-based foods, renowned for their unique flavors and human health benefits, contain probiotic organisms with reported in vitro antioxidative effects. This study investigates the probiotic properties of Latilactobacillus sakei MS103 (L. sakei MS103) and its antioxidant activities using an in vitro oxidative stress model based on the hydrogen peroxide (H2O2)-induced oxidative damage of RAW 264.7 cells. L. sakei MS103 exhibited tolerance to extreme conditions (bile salts, low pH, lysozyme, H2O2), antibiotic sensitivity, and auto-aggregation ability. Moreover, L. sakei MS103 co-aggregated with pathogenic Porphyromonas gingivalis cells, inhibited P. gingivalis-induced biofilm formation, and exhibited robust hydrophobic and electrostatic properties that enabled it to strongly bind to gingival epithelial cells and HT-29 cells for enhanced antioxidant effects. Additionally, L. sakei MS103 exhibited other antioxidant properties, including ion-chelating capability and the ability to effectively scavenge superoxide anion free radicals, hydroxyl, 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid, and 2,2-diphenyl-1-picrylhydrazyl. Furthermore, the addition of live or heat-killed L. sakei MS103 cells to H2O2-exposed RAW 264.7 cells alleviated oxidative stress, as reflected by reduced malondialdehyde levels, increased glutathione levels, and the up-regulated expression of four antioxidant-related genes (gshR2, gshR4, Gpx, and npx). These findings highlight L. sakei MS103 as a potential probiotic capable of inhibiting activities of P. gingivalis pathogenic bacteria and mitigating oxidative stress.

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3