Potential of Arabica Coffee Beans from Northern Thailand: Exploring Antidiabetic Metabolites through Liquid Chromatography with Tandem Mass Spectrometry (LC-MS/MS) Metabolomic Profiling across Diverse Postharvest Processing Techniques

Author:

Tantapakul Cholpisut1,Krobthong Sucheewin2ORCID,Jakkaew Prasara3ORCID,Sittisaree Wattanapong4ORCID,Aonbangkhen Chanat2ORCID,Yingchutrakul Yodying5

Affiliation:

1. The Research Unit of Natural Product Utilization, School of Science, Walailak University, Nakhon Si Thammarat 80160, Thailand

2. Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand

3. School of Information Technology, Mae Fah Luang University, Thasud, Muang, Chiang Rai 57100, Thailand

4. Merck Life Science Thailand, Bangkok 10110, Thailand

5. National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand

Abstract

Coffee, a widely consumed beverage worldwide, undergoes postharvest methods that influence its physicochemical characteristics, while roasting modulates its composition, affecting sensory attributes. This study investigates the impact of distinct postharvest methods (washed and natural) on the antidiabetic activities, including α-amylase and DPP4, as well as the phytochemical profiling of geological indicator (GI) coffee beans (Coffea arabica L.). The results indicate notable differences in antidiabetic activity and phytochemical profiles between washed and natural processing methods. Coffee beans processed naturally exhibit significant suppression of DPP4 and α-amylase activities (p-value < 0.01) compared to beans processed using the washed technique. TLC profiling using the ratios of the solvent systems of ethyl acetate/dichloromethane (DCM) and acetone/DCM as separation solvents reveals dominant spots for the washed technique. LC-MS/MS-based untargeted metabolomics analysis using principle component analysis (PCA) clearly segregates samples processed by the natural and washed techniques without any overlap region. A total of 1114 phytochemicals, including amino acids and short peptides, are annotated. The natural processing of coffee beans has been shown to yield a slightly higher content of chlorogenic acid (CGA) compared to the washed processing method. Our findings highlight the distinct bioactivities and phytochemical compositions of GI coffee beans processed using different techniques. This information can guide consumers in choosing coffee processing methods that offer potential benefits in terms of alternative treatment for diabetes.

Funder

Second Century Fund

Chulalongkorn University

Mae Fah Luang University

National Science and Technology Development Agency (NSTDA), Thailand

Innovation Policy Council

Development of Chula New Faculty Staff

Fundamental Fund

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3