Investigating the Chemical Composition of Lepidium sativum Seeds and Their Ability to Safeguard against Monosodium Glutamate-Induced Hepatic Dysfunction

Author:

El-Gendy Manal Salah1,El-Gezawy Eman Sobhy1,Saleh Ahmed A.2ORCID,Alhotan Rashed A.3ORCID,Al-Badwi Mohammed A. A.3,Hussein Elsayed Osman Sewlim4,El-Tahan Hossam M.567,Kim In Ho67ORCID,Cho Sungbo67ORCID,Omar Sara Mahmoud1

Affiliation:

1. Nutrition and Food Science Department, Faculty of Home Economics, Al-Azhar University, Tanta 31732, Egypt

2. Department of Poultry Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh 333516, Egypt

3. Department of Animal Production, College of Food & Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia

4. AlKhumasia for Feed and Animal Products, Riyadh-Olaya-Al Aqareyah 2-Office 705, P.O. Box 8344, Riyadh 11982, Saudi Arabia

5. Animal Production Research Institute, Agricultural Research Center, Ministry of Agriculture, Dokki 12611, Egypt

6. Animal Resource and Science Department, Dankook University, Cheonan 31116, Republic of Korea

7. Smart Animal Bio Institute, Dankook University, Cheonan 330714, Republic of Korea

Abstract

Monosodium glutamate (MSG) is one of the most frequently used food additives that endanger public health. The antioxidant, hyperlipidemic, and cytoprotective properties of Lepidium sativum seeds (LSS) as a natural remedy can minimize the harmful effects of MSG. This study investigated the potential protective effect of LSS against MSG-induced hepatotoxicity in rats. Male albino Sprague Dawley rats (n = 24) were equally divided into four groups for 30 days: the control group (G1) received a basal diet without supplement, group (G2) was fed a basal diet + MSG (30 g/kg b.w.) as a model group, group (G3) was fed a basal diet + MSG (30 g/kg b.w.) + LSS (30 g/kg b.w.), and group (G4) was fed a basal diet + MSG (30 g/kg b.w.) + LSS (60 g/kg b.w.). LSS enhanced serum alkaline phosphatase activity as well as total cholesterol, triglyceride, and glucose levels. It can decrease peroxide content in serum lipids and inhibit glutathione reductase and superoxide dismutase in hepatic cells. The dietary supplementation with LSS provided cytoprotection by enhancing the histoarchitecture of the liver and decreasing the number of apoptotic cells. Due to their antioxidant and anti-apoptotic properties, LSS effectively protect against the hepatotoxicity of MSG. These findings are of the highest significance for drawing attention to incorporating LSS in our food industry and as a health treatment in traditional medicine to combat MSG-induced hepatic abnormalities.

Funder

King Saud University

Basic Science Research Program through the National Research Foundation of Korea

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3