Wavelet Transform-Based Inertial Neural Network for Spatial Positioning Using Inertial Measurement Units

Author:

Tang Yong12,Gong Jianhua123,Li Yi12,Zhang Guoyong1,Yang Banghui1,Yang Zhiyuan12

Affiliation:

1. National Engineering Research Center for Geoinformatics, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. Zhejiang-CAS Application Center for Geoinformatics, Jiaxing 314100, China

Abstract

As the demand for spatial positioning continues to grow, positioning methods based on inertial measurement units (IMUs) are emerging as a promising research topic due to their low cost and robustness against environmental interference. These methods are particularly well suited for global navigation satellite system (GNSS)-denied environments and challenging visual scenarios. While existing algorithms for position estimation using IMUs have demonstrated some effectiveness, there is still significant room for improvement in terms of estimation accuracy. Current approaches primarily treat IMU data as simple time series, neglecting the frequency-domain characteristics of IMU signals. This paper emphasizes the importance of frequency-domain information in IMU signals and proposes a novel neural network, WINNet (Wavelet Inertial Neural Network), which integrates time- and frequency-domain signals using a wavelet transform for spatial positioning with inertial sensors. Additionally, we collected ground-truth data using a LiDAR setup and combined it with the TLIO dataset to form a new IMU spatial positioning dataset. The experimental results demonstrate that our proposed method outperforms the current state-of-the-art inertial neural network algorithms in terms of the ATE, RTE, and drift error metrics overall.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3