Automated Flood Prediction along Railway Tracks Using Remotely Sensed Data and Traditional Flood Models

Author:

Zakaria Abdul-Rashid1ORCID,Oommen Thomas2ORCID,Lautala Pasi3ORCID

Affiliation:

1. Department of Computer and Information Science, The University of Mississippi, 201 Weir Hall, University, Oxford, MS 38677, USA

2. Department of Geological and Geological Engineering, The University of Mississippi, 120 A Carrier Hall, University, Oxford, MS 38677, USA

3. Civil, Environmental and Geospatial Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA

Abstract

Ground hazards are a significant problem in the global economy, costing millions of dollars in damage each year. Railroad tracks are vulnerable to ground hazards like flooding since they traverse multiple terrains with complex environmental factors and diverse human developments. Traditionally, flood-hazard assessments are generated using models like the Hydrological Engineering Center–River Analysis System (HEC-RAS). However, these maps are typically created for design flood events (10, 50, 100, 500 years) and are not available for any specific storm event, as they are not designed for individual flood predictions. Remotely sensed methods, on the other hand, offer precise flood extents only during the flooding, which means the actual flood extents cannot be determined beforehand. Railroad agencies need daily flood extent maps before rainfall events to manage and plan for the parts of the railroad network that will be impacted during each rainfall event. A new approach would involve using traditional flood-modeling layers and remotely sensed flood model outputs such as flood maps created using the Google Earth Engine. These new approaches will use machine-learning tools in flood prediction and extent mapping. This new approach will allow for determining the extent of flood for each rainfall event on a daily basis using rainfall forecast; therefore, flooding extents will be modeled before the actual flood, allowing railroad managers to plan for flood events pre-emptively. Two approaches were used: support vector machines and deep neural networks. Both methods were fine-tuned using grid-search cross-validation; the deep neural network model was chosen as the best model since it was computationally less expensive in training the model and had fewer type II errors or false negatives, which were the priorities for the flood modeling and would be suitable for developing the automated system for the entire railway corridor. The best deep neural network was then deployed and used to assess the extent of flooding for two floods in 2020 and 2022. The results indicate that the model accurately approximates the actual flooding extent and can predict flooding on a daily temporal basis using rainfall forecasts.

Funder

Federal Railroad Administration

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3