Evolution and Spatiotemporal Response of Ecological Environment Quality to Human Activities and Climate: Case Study of Hunan Province, China

Author:

Hui Jiawei123,Cheng Yongsheng123

Affiliation:

1. School of Geosciences and Info-Physics, Central South University, Changsha 410083, China

2. Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Ministry of Education, Central South University, Changsha 410083, China

3. Hunan Key Laboratory of Nonferrous Resources and Geological Disaster Exploration, Changsha 410083, China

Abstract

Human beings are facing increasingly serious threats to the ecological environment with industrial development and urban expansion. The changes in ecological environmental quality (EEQ) and their driving factors are attracting increased attention. As such, simple and effective ecological environmental quality monitoring processes must be developed to help protect the ecological environment. Based on the RSEI, we improved the data dimensionality reduction method using the coefficient of variation method, constructing RSEI-v using Landsat and MODIS data. Based on RSEI-v, we quantitatively monitored the characteristics of the changes in EEQ in Hunan Province, China, and the characteristics of its spatiotemporal response to changes in human activities and climate factors. The results show the following: (1) RSEI-v and RSEI perform similarly in characterizing ecological environment quality. The calculated RSEI-v is a positive indicator of EEQ, but RSEI is not. (2) The high EEQ values in Hunan are concentrated in the eastern and western mountainous areas, whereas low values are concentrated in the central plains. (3) A total of 49.40% of the area was experiencing substantial changes in EEQ, and the areas with significant decreases (accounting for 2.42% of the total area) were concentrated in the vicinity of various cities, especially the Changsha–Zhuzhou–Xiangtan urban agglomeration. The areas experiencing substantial EEQ increases (accounting for 16.97% of the total area) were concentrated in the eastern and western forests. (4) The areas experiencing substantial EEQ decreases, accounting for more than 60% of the area, were mainly affected by human activities. The areas surrounding Changsha and Hengyang experienced noteworthy decreases in EEQ. The areas where the EEQ was affected by precipitation and temperature were mainly concentrated in the eastern and western mountainous areas. This study provides a valuable reference for ecological environment quality monitoring and environmental protection.

Funder

Key Research and Development Program of Hunan Province

Natural Science Foundation of Hunan Province

Open Project of Key Laboratory of the Ministry of Natural Resources

Natural Science Foundation of Changsha City

Publisher

MDPI AG

Reference60 articles.

1. Baste, I.A., Watson, R.T., Brauman, K.I., Samper, C., and Walzer, C. (2021). Making Peace with Nature: A Scientific Blueprint to Tackle the Climate, Biodiversity and Pollution Emergencies, United Nations Environment Programme (UNEP).

2. Focus on health for global adaptation to climate change;Cai;Nature,2023

3. Reductions in global biodiversity loss predicted from conservation spending;Waldron;Nature,2017

4. Building in or out? Examining urban expansion patterns and land use efficiency across the global sample of 466 cities with million plus inhabitants;Chakraborty;Habitat Int.,2022

5. Per capita resource consumption and resource carrying capacity: A comparison of the sustainability of 17 mainstream countries;Lei;Energy Policy,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3