Selection of Lunar South Pole Landing Site Based on Constructing and Analyzing Fuzzy Cognitive Maps

Author:

Jia YutongORCID,Liu Lei,Wang Xingchen,Guo NingboORCID,Wan Gang

Abstract

The Permanently Shadowed Regions (PSRs) of the lunar south pole have never been directly sampled. To explore and discover lunar resources, the Chinese lunar south pole exploration mission is scheduled to land in direct sunlight near the PSR, where sampling and analysis will be carried out. The selection of sites for lunar landing sampling sites is one of the key steps of the mission. The main factors affecting the site selection are the distribution of PSRs, lunar surface slopes, rock distribution, light intensity, and maximum temperature. In this paper, the main factors affecting site selection are analyzed based on lunar multi-source remote sensing data. Combined with previous engineering constraints, we then propose a comprehensive multi-factor fuzzy cognition and selection model for the lunar south site selection. An analytical model based on a fuzzy cognitive map algorithm is also established. Furthermore, to make a preliminary landing area selection, we determine the evaluation index for the candidate landing areas using fuzzy reasoning. Using the proposed model and combined scoring index, we also verify and analyze the prominent impact craters at the lunar south pole. The scores of de Gerlache (88.48°S 88.34°W), Shackleton (89.67°S 129.78°E), and Amundsen (84.5°S, 82.8°E) craters are determined using fuzzy interference as 0.816, 0.814, and 0.784, respectively. Moreover, using our proposed approach, we identify feasible landing sites around the de Gerlache crater close to the PSR to facilitate discovery of water ice exposures in future missions. The proposed method is capable of evaluating alternative landing zones subject to multiple engineering constraints on the Moon or Mars based on the existing data.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3