Anti-Inflammatory Effects of SGLT1 Synthetic Ligand in In Vitro and In Vivo Models of Lung Diseases

Author:

Rumio Cristiano1,Dusio Giuseppina1,Cardani Diego1,La Ferla Barbara2ORCID,D’Orazio Giuseppe3ORCID

Affiliation:

1. Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy

2. Department of Earth and Environmental Sciences DISAT, Università degli Studi di Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy

3. Department of Chemistry, Università degli Studi di Milano, Via C. Golgi 19, 20133 Milan, Italy

Abstract

Background. Several research findings suggest that sodium–glucose co-transporter 1 (SGLT1) is implicated in the progression and control of infections and inflammation processes at the pulmonary level. Moreover, our previous works indicate an engagement of SGLT1 in inhibiting the inflammatory response induced in intestinal epithelial cells by TLR agonists. In this study, we report the anti-inflammatory effects observed in the lung upon engagement of the transporter, and upon the use of glucose and BLF501, a synthetic SGLT1 ligand, for the treatment of animal models of lung inflammation, including a model of allergic asthma. Methods. In vitro experiments were carried out on human pneumocytes stimulated with LPS from Pseudomonas aeruginosa and co-treated with glucose or BLF501, and the production of IL-8 was determined. The anti-inflammatory effect associated with SGLT1 engagement was then assessed in in vivo models of LPS-induced lung injury, as well as in a murine model of ovalbumin (OVA)-induced asthma, treating mice with aerosolized LPS and the synthetic ligand. After the treatments, lung samples were collected and analyzed for morphological alterations by histological examination and immunohistochemical analysis; serum and BALF samples were collected for the determination of several pro- and anti-inflammatory markers. Results. In vitro experiments on human pneumocytes treated with LPS showed significant inhibition of IL-8 production. The results of two in vivo experimental models, mice exposed to aerosolized LPS and OVA-induced asthma, revealed that the engagement of glucose transport protein 1 (SGLT1) induced a significant anti-inflammatory effect in the lungs. In the first model, the acute respiratory distress induced in mice was abrogated by co-treatment with the ligand, with almost complete recovery of the lung morphology and physiology. Similar results were observed in the OVA-induced model of allergic asthma, both with aerosolized and oral BLF501, suggesting an engagement of SGLT1 expressed both in intestinal and alveolar cells. Conclusions. Our results confirmed the engagement of SGLT1 in lung inflammation processes and suggested that BLF501, a non-metabolizable synthetic ligand of the co-transporter, might represent a drug candidate for therapeutic intervention against lung inflammation states.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3