Optimized Classification of Suspended Particles in Seawater by Dense Sampling of Polarized Light Pulses

Author:

Guo Zhiming,Deng Hanbo,Li Jiajin,Liao RanORCID,Ma HuiORCID

Abstract

Suspended particles affect the state and vitality of the marine ecosystem. In situ probing and accurately classifying the suspended particles in seawater have an important impact on ecological research and environmental monitoring. Individual measurement of the optical polarization parameters scattered by the suspended particles has been proven to be a powerful tool to classify the particulate compositions in seawater. In previous works, the temporal polarized light pulses are sampled and averaged to evaluate the polarization parameters. In this paper, a method based on dense sampling of polarized light pulses is proposed and the experimental setup is built. The experimental results show that the dense sampling method optimizes the classification and increases the average accuracy by at least 16% than the average method. We demonstrate the feasibility of dense sampling method by classifying the multiple types of particles in mixed suspensions and show its excellent generalization ability by multi-classification of the particles. Additional analysis indicates that the dense sampling method basically takes advantage of the high-quality polarization parameters to optimize the classification performance. The above results suggest that the proposed dense sampling method has the potential to probe the suspended particles in seawater in red-tide early warning, as well as sediment and microplastics monitoring.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3