Fault Detection for PEM Fuel Cells via Analytical Redundancy: A Critical Review and Prospects

Author:

Sani Mukhtar1ORCID,Piffard Maxime1,Heiries Vincent2

Affiliation:

1. Université Grenoble Alpes, CEA, LITEN, F-38000 Grenoble, France

2. Université Grenoble Alpes, CEA, LETI, F-38000 Grenoble, France

Abstract

Decarbonization of the transport sector could be achieved through fuel cell technology. The candidature of this technology is motivated by its high current density and lack of emissions. However, its widespread deployment is restrained by durability and reliability constraints. During normal operation, the fuel cell system supplies stable power to the load. Contrarily, when it is operated under faulty conditions, the system’s output power deteriorates, leading to low durability. It is therefore of paramount importance to ensure that the system is operated in a non-faulty condition. In this paper, we provide a critical review of the analytical-redundancy-based fault diagnosis methods for proton exchange membrane fuel cells (PEMFCs). An in-depth analysis of the various methods has been presented in terms of accuracy, complexity, implementability, and robustness to aging and dynamic operating conditions.

Funder

Institut Carnot Energies du Futur

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3