Brassinolide Soaking Reduced Nitrite Content and Extended Color Change and Storage Time of Toona sinensis Bud during Low Temperature and Near Freezing-Point Temperature Storage

Author:

Xu Xihang,Guo Chenchen,Ma Chunying,Li Minghui,Chen Ying,Liu Cunqi,Chu Jianzhou,Yao Xiaoqin

Abstract

Low temperatures are often used to preserve fruits and vegetables. However, low-temperature storage also causes problems, such as chilling injury, nitrite accumulation, and browning aggravation in plants. This study investigated the effects of brassinolide (BR,1.0 mg L−1) solution soaking, storage temperatures (−2 ± 0.5 °C, 4 ± 0.5 °C, and 20 ± 1 °C), and their combinations on nitrite content, color change, and quality of stored Toona sinensis bud. The results showed that low temperature (LT, 4 ± 0.5 °C) and near freezing-point temperature (NFPT, −2 ± 0.5 °C) storage effectively inhibited the decay of T. sinensis bud compared to room temperature (20 ± 1 °C, the control). The combined treatments of BR with LT or NFPT reduced nitrite content and maintained the color and the contents of vitamin C, carotenoids, saponins, β-sitosterol, polyphenol, anthocyanin, flavonoids, and alkaloids in T. sinensis bud. BR soaking delayed the occurrence of chilling injury during NFPT storage. Meanwhile, BR soaking enhanced the DPPH radical scavenging activity, ABTS activity, and FRAP content by increasing SOD and POD activity and the contents of proline, soluble, and glutathione, thus decreasing MDA and hydrogen peroxide content and the rate of superoxide radical production in T. sinensis bud during NFPT storage. This study provides a valuable strategy for postharvest T. sinensis bud in LT and NFPT storage. BR soaking extended the shelf life during LT storage and maintained a better appearance and nutritional quality during NFPT storage.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3