Bubbling Phenomena in Liquid-Filled Transformers: Background and Assessment

Author:

Gmati Ghada1,Rao Ungarala Mohan1ORCID,Fofana Issouf1ORCID,Picher Patrick2ORCID,Arroyo-Fernàndez Oscar2,Rebaine Djamal1

Affiliation:

1. Department of Applied Sciences, University of Quebec in Chicoutimi, Saguenay, QC G7H 2B1, Canada

2. Hydro-Québec’s Research Institute, Varennes, QC J3X 1S1, Canada

Abstract

The degradation of the insulation system in liquid-filled power transformers is a serious concern for electric power utilities. The insulation system’s ageing is accelerated by moisture, acids, oxidation products, and other decay particles (soluble and colloidal). The presence of these ageing by-products is detrimental to the insulation system and may further lead to premature ageing and serious consequences. The ageing mechanisms of oil-paper insulation are complex, highly interrelated, and strongly temperature-dependent. The operating temperature of the transformer insulating system has a direct relationship with the loading profile. The major aspect that is witnessed with the fluctuating temperatures is moisture migration and subsequent bubble evolution. In other words, gas bubbles evolve from the release of water vapor from the cellulosic insulation wrapped around the transformer windings. The models presented in the existing standards, such as the IEC Std. 60076-7:2018 and the IEEE Std. C57.91:2011, are mainly based on the insulation temperature, which acts as a key parameter. Several studies have investigated the moisture dynamics and bubbling phenomenon as a function of the water content in the paper and the state of the insulation system. Some studies have reported different prototypes for the estimation of the bubble inception temperatures under selected conditions. However, there are various attributes of the insulation system that are to be considered, especially when expanding the models for the alternative liquids. This paper reviews various evaluation models reported in the literature that help understand the bubbling phenomenon in transformer insulation. The discussions also keep us in the loop on the estimation of bubbling behavior in alternative dielectric liquids and key attributable factors for use in transformers. In addition, useful tutorial elements focusing on the bubbling issue in transformers as well as some critical analyses are addressed for future research on this topic.

Funder

Natural Sciences and Engineering Research Council

InnovÉÉ

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference95 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The influence of small molecule products on natural ester impregnated cellulose insulation paper under electric-thermal coupling field;Colloids and Surfaces A: Physicochemical and Engineering Aspects;2024-09

2. The Effect of Source Data on Graphical Pentagons DGA Methods for Detecting Incipient Faults in Power Transformers;2023 International Conference on Decision Aid Sciences and Applications (DASA);2023-09-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3