IL-7 Deficiency Exacerbates Atopic Dermatitis in NC/Nga Mice

Author:

Park Hyun Jung1ORCID,Lee Sung Won2,Van Kaer Luc3ORCID,Lee Myeong Sup4,Hong Seokmann1ORCID

Affiliation:

1. Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul 05006, Republic of Korea

2. Department of Biomedical Laboratory Science, College of Health and Biomedical Services, Sangji University, Wonju 26339, Republic of Korea

3. Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA

4. Galux Inc., Gwanak-gu, Seoul 08738, Republic of Korea

Abstract

Interleukin-7 (IL-7) plays a vital role in the homeostasis of CD4+ and CD8+ T cells. Although IL-7 has been implicated in T helper (Th)1- and Th17-mediated autoinflammatory diseases, its role in Th2-type allergic disorders, such as atopic dermatitis (AD), remains unclear. Thus, to elucidate the effects of IL-7 deficiency on AD development, we generated IL-7-deficient AD-prone mice by backcrossing IL-7 knockout (KO) B6 mice onto the NC/Nga (NC) mouse strain, a model for human AD. As expected, IL-7 KO NC mice displayed defective development of conventional CD4+ and CD8+ T cells compared with wild type (WT) NC mice. However, IL-7 KO NC mice presented with enhanced AD clinical scores, IgE hyperproduction, and increased epidermal thickness compared with WT NC mice. Moreover, IL-7 deficiency decreased Th1, Th17, and IFN-γ-producing CD8+ T cells but increased Th2 cells in the spleen of NC mice, indicating that a reduced Th1/Th2 ratio correlates with severity of AD pathogenesis. Furthermore, significantly more basophils and mast cells infiltrated the skin lesions of IL-7 KO NC mice. Taken together, our findings suggest that IL-7 could be a useful therapeutic target for treating Th2-mediated skin inflammations, such as AD.

Funder

Ministry of Education

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3