Porcine Follicular Fluid-Derived Exosome: The Pivotal Material for Porcine Oocyte Maturation in Lipid Antioxidant Activity

Author:

Kim Euihyun1ORCID,Ra Kihae1,Lee Myung-Shin2,Kim Geon A.3

Affiliation:

1. Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea

2. Department of Microbiology and Immunology, School of Medicine, Eulji University, Daejeon 35233, Republic of Korea

3. Department of Biomedical Laboratory Science, School of Healthcare Science, Eulji University, Uijeongbu 34824, Republic of Korea

Abstract

Several studies have examined exosomes derived from porcine follicular fluid (FF), but few have reported their application in controlled experiments. The main concern in the field of embryology may be that controlled conditions, such as using a defined medium intermittently, cause poor results in mammalian oocyte maturation and embryo development. The first reason is the absence of the FF, which copes with the majority of the processes emerging in oocytes and embryos. Therefore, we added exosomes derived from porcine FF to the maturation medium of porcine oocytes. For morphological assessment, cumulus cell expansion and subsequent embryonic development were evaluated. Moreover, several stainings, such as glutathione (GSH) and reactive oxygen species (ROS), fatty acid, ATP, and mitochondrial activity, as well as evaluations of gene expression and protein analysis, were used for the functional verification of exosomes. When the oocytes were treated with exosomes, the lipid metabolism and cell survival of the oocytes were fully recovered, as well as morphological evaluations compared to the porcine FF-excluded defined medium. Therefore, controlled experiments may produce reliable data if the exosomes are treated with the desired amounts, and we suggest applying FF-derived exosomes to promote experimental data when performing controlled experiments in embryology.

Funder

National Research Foundation

the Ministry of Health & Welfare

Eulji University Research Grant

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3