Novel Insights to Assess Climate Resilience in Goats Using a Holistic Approach of Skin-Based Advanced NGS Technologies

Author:

Mullakkalparambil Velayudhan Silpa1ORCID,Sejian Veerasamy23ORCID,Devaraj Chinnasamy3ORCID,Manjunathareddy Gundallahalli Bayyappa4ORCID,Ruban Wilfred5ORCID,Kadam Vinod6ORCID,König Sven1ORCID,Bhatta Raghavendra3

Affiliation:

1. Institute of Animal Breeding and Genetics, Justus Liebig University Giessen, Ludwigstr. 21b, 35390 Giessen, Germany

2. Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet, Pondicherry 605008, India

3. Centre for Climate Resilient Animal Adaptation Studies, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore 560030, India

4. ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bangalore 560064, India

5. Department of Livestock Product Technology, Hebbal Veterinary College, Karnataka Veterinary Animal and Fishery Sciences University, Hebbal, Bangalore 560024, India

6. Textile Manufacturing and Textile Chemistry Division, Central Sheep and Wool Research Institute, Avikanagar, Malpura 304501, India

Abstract

A novel study was conducted to elucidate heat-stress responses on a number of hair- and skin-based traits in two indigenous goat breeds using a holistic approach that considered a number of phenotypic and genomic variables. The two goat breeds, Kanni Aadu and Kodi Aadu, were subjected to a simulated heat-stress study using the climate chambers. Four groups consisting of six goats each (KAC, Kaani Aadu control; KAH, Kanni Aadu heat stress; KOC, Kodi Aadu control; and KOH, Kodi Aadu heat stress) were considered for the study. The impact of heat stress on caprine skin tissue along with a comparative assessment of the thermal resilience of the two goat breeds was assessed. The variables considered were hair characteristics, hair cortisol, hair follicle quantitative PCR (qPCR), sweating (sweating rate and active sweat gland measurement), skin histometry, skin-surface infrared thermography (IRT), skin 16S rRNA V3-V4 metagenomics, skin transcriptomics, and skin bisulfite sequencing. Heat stress significantly influenced the hair fiber characteristics (fiber length) and hair follicle qPCR profile (Heat-shock protein 70 (HSP70), HSP90, and HSP110). Significantly higher sweating rate, activated sweat gland number, skin epithelium, and sweat gland number (histometry) were observed in heat stressed goats. The skin microbiota was also observed to be significantly altered due to heat stress, with a relatively higher alteration being noticed in Kanni Aadu goats than in Kodi Aadi goats. Furthermore, the transcriptomics and epigenetics analysis also pointed towards the significant impact of heat stress at the cellular and molecular levels in caprine skin tissue. The higher proportion of differentially expressed genes (DEGs) along with higher differentially methylated regions (DMRs) in Kanni Aadu goats due to heat stress when compared to Kodi Aadu goats pointed towards the better resilience of the latter breed. A number of established skin, adaptation, and immune-response genes were also observed to be significantly expressed/methylated. Additionally, the influence of heat stress at the genomic level was also predicted to result in significant functional alterations. This novel study thereby highlights the impact of heat stress on the caprine skin tissue and also the difference in thermal resilience exhibited by the two indigenous goat breeds, with Kodi Aadu goats being more resilient.

Funder

Indian Council of Agricultural Research

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3