The ndrg2 Gene Regulates Hair Cell Morphogenesis and Auditory Function during Zebrafish Development

Author:

Wang Cheng1,Wang Xin2ORCID,Zheng Hao3,Yao Jia1,Xiang Yuqing1,Liu Dong12ORCID

Affiliation:

1. Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China

2. Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong 226001, China

3. School of Medicine, Nantong University, Nantong 226001, China

Abstract

Damages of sensory hair cells (HCs) are mainly responsible for sensorineural hearing loss, however, its pathological mechanism is not yet fully understood due to the fact that many potential deafness genes remain unidentified. N-myc downstream-regulated gene 2 (ndrg2) is commonly regarded as a tumor suppressor and a cell stress-responsive gene extensively involved in cell proliferation, differentiation, apoptosis and invasion, while its roles in zebrafish HC morphogenesis and hearing remains unclear. Results of this study suggested that ndrg2 was highly expressed in the HCs of the otic vesicle and neuromasts via in situ hybridization and single-cell RNA sequencing. Ndrg2 loss-of-function larvae showed decreased crista HCs, shortened cilia, and reduced neuromasts and functional HCs, which could be rescued by the microinjection of ndrg2 mRNA. Moreover, ndrg2 deficiency induced attenuated startle response behaviors to sound vibration stimuli. Mechanistically, there were no detectable HC apoptosis and supporting cell changes in the ndrg2 mutants, and HCs were capable of recovering by blocking the Notch signaling pathway, suggesting that ndrg2 was implicated in HC differentiation mediated by Notch. Overall, our study demonstrates that ndrg2 plays crucial roles in HC development and auditory sensory function utilizing the zebrafish model, which provides new insights into the identification of potential deafness genes and regulation mechanism of HC development.

Funder

National Natural Science Foundation of China

Natural Science Foundation of the Jiangsu Higher Education Institutions of China

“Innovation and Entrepreneurship Doctor” Project of Jiangsu Province, Jiangsu Students’ Platform for innovation and entrepreneurship training program

Soft Science Research Topic of Wuxi Association for Science and Technology

Project of Wuxi Health Committee

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3