The OX Optimizer: A Novel Optimization Algorithm and Its Application in Enhancing Support Vector Machine Performance for Attack Detection

Author:

Al Hwaitat Ahmad K.1ORCID,Fakhouri Hussam N.2ORCID

Affiliation:

1. King Abdullah the II IT School, Department of Computer Science, The University of Jordan, Amman 11942, Jordan

2. Data Science and Artificial Intelligence Department, Faculty of Information Technology, University of Petra, Amman 11196, Jordan

Abstract

In this paper, we introduce a novel optimization algorithm called the OX optimizer, inspired by oxen animals, which are characterized by their great strength. The OX optimizer is designed to address the challenges posed by complex, high-dimensional optimization problems. The design of the OX optimizer embodies a fundamental symmetry between global and local search processes. This symmetry ensures a balanced and effective exploration of the solution space, highlighting the algorithm’s innovative contribution to the field of optimization. The OX optimizer has been evaluated on CEC2022 and CEC2017 IEEE competition benchmark functions. The results demonstrate the OX optimizer’s superior performance in terms of convergence speed and solution quality compared to existing state-of-the-art algorithms. The algorithm’s robustness and adaptability to various problem landscapes highlight its potential as a powerful tool for solving diverse optimization tasks. Detailed analysis of convergence curves, search history distributions, and sensitivity heatmaps further support these findings. Furthermore, the OX optimizer has been applied to optimize support vector machines (SVMs), emphasizing parameter selection and feature optimization. We tested it on the NSL-KDD dataset to evaluate its efficacy in an intrusion detection system. The results demonstrate that the OX optimizer significantly enhances SVM performance, facilitating effective exploration of the parameter space.

Funder

Security Management Technology Group

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3