Modifying the Characteristics of the Electrical Arc Generated during Hot Switching by Reinforcing Silver and Copper Matrices with Carbon Nanotubes

Author:

Alderete Bruno1ORCID,Schäfer Christian1,Nayak U. Pranav1ORCID,Mücklich Frank1ORCID,Suarez Sebastian1ORCID

Affiliation:

1. Department of Materials Science and Engineering, Saarland University, Campus D3.3, 66123 Saarbrücken, Germany

Abstract

Switching elements are crucial components in electrical and electronic systems that undergo severe degradation due to the electrical arc that is generated during breaking. Understanding the behavior of the electrical arc and modifying its characteristics via proper electrode design can significantly improve durability while also promoting optimal performance, reliability, and safety in circuit breakers. This work evaluates the feasibility of carbon nanotube (CNT)-reinforced silver and copper metal matrix composites (MMCs) as switching electrodes and the influence of CNT concentration on the characteristics of the arcs generated. Accordingly, three different concentrations per MMC were manufactured via powder metallurgy. The MMCs and reference materials were subjected to a single break operation and the electrical arcs generated using 100 W and 200 W resistive loads were analyzed. The proposed MMCs displayed promising results for application in low-voltage switches. The addition of CNTs improved performance by maintaining the arc’s energy in the silver MMCs and reducing the arc’s energy in the copper MMCs. Moreover, a CNT concentration of at least 2 wt.% is required to prevent unstable arcs in both metallic matrices. Increased CNT content further promotes the splitting of the electrical arc due to a more complex phase distribution, thereby reducing the arc’s spatial energy density.

Funder

Deutsche Forschungsgemeinschaft

European Regional Development Fund in the Mat-Innovat (“Kreislauffähige Materialsysteme für innovatives Hochleistungswerkstoffe”) project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3