New Material of Karakoromys (Ctenodactylidae, Rodentia) from Late Eocene-Early Oligocene of Ulantatal (Nei Mongol): Taxonomy, Diversity, and Response to Climatic Change

Author:

Xu Rancheng12ORCID,Zhang Zhaoqun12ORCID,Li Qian1,Wang Bian1

Affiliation:

1. Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences (CAS), Beijing 100044, China

2. College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

The Eocene-Oligocene Transition (EOT) was one of the most profound climate changes in the Cenozoic era, characterized by global cooling around 34 million years ago. This time period also witnessed major faunal turnovers, such as the “Mongolian Remodeling” of Asia, characterized by the dominance of rodents and lagomorphs after the EOT. Previous studies have primarily focused on overall faunal change across the EOT. Here, we examined one genus, the earliest ctenodactylid Karakoromys, based on rich fossils from continuous sections at Ulantatal, Nei Mongol, magnetostragraphically dated to latest Eocene-Early Oligocene. Based on a systematic paleontological study of these fossils, we recognized four species of Karakoromys (Karakoromys decussus, K. arcanus, K. chelkaris, and K. conjunctus sp. nov.), indicating a relatively high diversity of the most primitive ctenodactylids during the latest Eocene-Early Oligocene (~34.9–30.8 Ma). The turnover of ctenodactylids primarily occurred during a regional aridification event around 31 Ma rather than during the EOT cooling event, suggesting that regional precipitation variation in the semi-arid area may have played a more important role than global temperature change in the evolution of early ctenodactylids.

Funder

Strategic Priority Research Program of Chinese Academy of Sciences

National Natural Science Foundation of China

the Special Fund for Fossil Excavation and Preparation of the Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modeling,Ecology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3