The Endemic Species Flock of Labeobarbus spp. in L. Tana (Ethiopia) Threatened by Extinction: Implications for Conservation Management

Author:

Gebremedhin Shewit,Bruneel StijnORCID,Getahun Abebe,Anteneh Wassie,Goethals Peter

Abstract

The endemic Labeobarbus species in Lake Tana are severely affected by anthropogenic pressures. The implementation of fisheries management is, therefore, vital for their sustainable exploitation. This study aimed at investigating the catch distribution and size at 50% maturity (FL50%) of the Labeobarbus species. Samples were collected monthly from May 2016 to April 2017 at four sites. The relative abundance, catch per unit effort (CPUE), and size distribution of these species was computed, and logistic regression was used to calculate FL50%. Of the 15 species observed, five species constituted 88% of the total catch. The monthly catch of the Labeobarbus spp. declined by more than 85% since 1993 and by 76% since 2001. Moreover, the CPUE of Labeobarbus has markedly decreased from 63 kg/trip in 1991–1993 to 2 kg/trip in 2016–2017. Additionally, large size specimens (≥30 cm fork length) were rarely recorded, and FL50% of the dominant species decreased. This suggests that the unique species flock may be threatened by extinction. Given the size distribution of the species, the current social context, and the need for a continuous supply of fish for low-income communities, a mesh-size limitation represents a more sustainable and acceptable management measure than a closed season. This paper illustrates the tension between sustainable development goal (SDGs) 1—No Poverty, 2—Zero Hunger, and 8—Decent Work and Economic Growth in Bahir Dar City on the one hand, and SDG’s 11—Sustainable Cities and Communities, 12—Responsible Consumption and Production, and 14—Life Below Water on the other hand. A key for the local, sustainable development of the fisheries is to find a balance between the fishing activities and the carrying capacity of the Lake Tana. Overfishing and illegal fishing are some of the major threats in this respect.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3