Effects of Heating Mode and Temperature on the Microstructures, Electrical and Optical Properties of Molybdenum Thin Films

Author:

Zhao Haili,Xie JingpeiORCID,Mao Aixia,Wang Aiqin,Chen Yanfang,Liang Tingting,Ma Douqin

Abstract

In this paper, molybdenum (Mo) thin films are deposited on soda-lime glass (SLG) substrates by direct current magnetron sputtering and heated in three different modes at different temperatures, including substrate heating, annealing treatment, and both substrate heating and annealing treatment. The effects of heating temperature and heating mode on the structures, morphology, optical and electrical properties of Mo thin films were systematically investigated by X-ray diffraction (XRD), Scanning electron microscopy (SEM), atomic force microscope (AFM) and UV-visible spectrophotometer (UV-vis spectra). It is shown that as the substrate and annealing temperature increase, the crystallinity of Mo thin films is improved, and the grain sizes become bigger. Especially in the mode of both substrate heating and annealing treatment at higher temperature, the obtained Mo thin films show higher crystallinity and conductivity. Moreover, with the increase of substrate and annealing temperature in different heating modes, both the surface compactness of Mo films and the optical reflectance increase correspondingly. Furthermore, the Mo film, prepared at the substrate heating temperature of 400 °C and annealed at 400 °C, showed excellent comprehensive performance, and the resistivity is as low as 1.36 × 10−5 Ω·cm. Using this optimized Mo thin film as an electrode, copper indium gallium selenium (CIGS) solar cells have a maximum photo-conversion efficiency of 12.8%.

Funder

Education Department of Henan Province

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3