A Case Study Evaluating Water Quality and Reach-, Buffer-, and Watershed-Scale Explanatory Variables of an Urban Coastal Watershed

Author:

Heidkamp Laurissa C.,Christian Alan D.

Abstract

Land use land cover within a watershed influences stream water quality, habitat quality, and biological community structure. As development and associated impervious surface increases in a watershed, changes in storm water and nutrient inputs generally cause declines in habitat conditions and biodiversity. The first goal of our study was to evaluate the water quality in the Charles River watershed, in which our objective (G1O1) was to establish ten 100-meter reach-scale sampling stations and conduct physical, chemical, and biological assessments. The second goal of this study was to better understand the direct and indirect effects of hierarchical variables on water quality in the Charles River watershed. Our first objective of our second goal (G2O1) was to calculate land use land cover percentages at the pour-point subwatershed and local 100-meter buffer scale for each of our ten 100-meter reach sampling stations. Our second objective of our second goal (G2O2) was to use path analysis to determine the direct and indirect effects of land use land cover and impervious surface on water quality in the Charles River watershed. The results of G1O1 were that habitat quality assessments ranged from “marginal” to “optimal” and biological quality assessments ranged from “fair” to “good“, indicating overall “fair” or better water quality conditions in the watershed. The results of G2O2 were that our path analysis resulted in differences in effects of development between the buffer and sub-watershed scale. At the buffer scale, water quality was influenced more negatively by the percentage of developed land area versus the percentage of impervious cover. While both buffer development and habitat quality had a direct effect on Streamside Biosurvey Macroinvertebrates, buffer development also directly hindered habitat quality, thus having an indirect effect on Streamside Biosurvey Macroinvertebrates through habitat. Streamside Biosurvey Macroinvertebrate scores were shown to be more sensitive to development within the buffer versus at the sub-watershed scale, where impervious cover was a more important indicator of stream water quality. Through this small case study of 10 stations within the Charles River watershed, we illustrated how citizen-science level water quality assessments can be combined with water chemistry and hierarchical LULC data to provide insights into potential direct and indirect effects on water quality. As the fields of landscape ecology and conservation continue to grow, so does our ability to determine changes in land development and devise management strategies aimed at improving water quality.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3