Self-Ratings of Olfactory Function and Their Relation to Olfactory Test Scores. A Data Science-Based Analysis in Patients with Nasal Polyposis

Author:

Lötsch JörnORCID,Hintschich Constantin A.,Petridis Petros,Pade Jürgen,Hummel Thomas

Abstract

Olfactory self-assessments have been analyzed with often negative but also positive conclusions about their usefulness as a surrogate for sensory olfactory testing. Patients with nasal polyposis have been highlighted as a well-predisposed group for reliable self-assessment. In a prospective cohort of n = 156 nasal polyposis patients, olfactory threshold, odor discrimination, and odor identification were tested using the “Sniffin’ Sticks” test battery, along with self-assessments of olfactory acuity on a numerical rating scale with seven named items or on a 10-point scale with only the extremes named. Apparent highly significant correlations in the complete cohort proved to reflect the group differences in olfactory diagnoses of anosmia (n = 65), hyposmia (n = 74), and normosmia (n = 17), more than the true correlations of self-ratings with olfactory test results, which were mostly very weak. The olfactory self-ratings correlated with a quality of life score, however, only weakly. By contrast, olfactory self-ratings proved as informative in assigning the categorical olfactory diagnosis. Using an olfactory diagnostic instrument, which consists of a mapping rule of two numerical rating scales of one’s olfactory function to the olfactory functional diagnosis based on the “Sniffin’ Sticks” clinical test battery, the diagnoses of anosmia, hyposmia, or normosmia could be derived from the self-ratings at a satisfactorily balanced accuracy of about 80%. It remains to be seen whether this approach of translating self-assessments into olfactory diagnoses of anosmia, hyposmia, and normosmia can be generalized to other clinical cohorts in which olfaction plays a role.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3