On the Impact of Additive Manufacturing Processes Complexity on Modelling

Author:

Stavropoulos PanagiotisORCID,Foteinopoulos Panagis,Papapacharalampopoulos Alexios

Abstract

The interest in additive manufacturing (AM) processes is constantly increasing due to the many advantages they offer. To this end, a variety of modelling techniques for the plethora of the AM mechanisms has been proposed. However, the process modelling complexity, a term that can be used in order to define the level of detail of the simulations, has not been clearly addressed so far. In particular, one important aspect that is common in all the AM processes is the movement of the head, which directly affects part quality and build time. The knowledge of the entire progression of the phenomenon is a key aspect for the optimization of the path as well as the speed evolution in time of the head. In this study, a metamodeling framework for AM is presented, aiming to increase the practicality of simulations that investigate the effect of the movement of the head on part quality. The existing AM process groups have been classified based on three parameters/axes: temperature of the process, complexity, and part size, where the complexity has been modelled using a dedicated heuristic metric, based on entropy. To achieve this, a discretized version of the processes implicated variables has been developed, introducing three types of variable: process parameters, key modeling variables and performance indicators. This can lead to an enhanced roadmap for the significance of the variables and the interpretation and use of the various models. The utilized spectrum of AM processes is discussed with respect to the modelling types, namely theoretical/computational and experimental/empirical.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference85 articles.

1. Manufacturing Systems: Theory and Practice;Chryssolouris,2006

2. Basics of 3D Printing

3. RAPID MANUFACTURING AND RAPID TOOLING WITH LAYER MANUFACTURING (LM) TECHNOLOGIES, STATE OF THE ART AND FUTURE PERSPECTIVES

4. Rapid Manufacturing: An Industrial Revolution for the Digital Age;Hopkinson,2005

5. Toward engineering functional organ modules by additive manufacturing

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3