The Synthesis and Characterization of a Delivery System Based on Polymersomes and a Xanthone with Inhibitory Activity in Glioblastoma

Author:

Alves Ana123,Silva Ana Margarida4ORCID,Nunes Claúdia5,Cravo Sara26ORCID,Reis Salette5ORCID,Pinto Madalena26ORCID,Sousa Emília26ORCID,Rodrigues Francisca4ORCID,Ferreira Domingos13,Costa Paulo C.13ORCID,Correia-da-Silva Marta26ORCID

Affiliation:

1. UCIBIO—Applied Molecular Biosciences Unit, MedTech-Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal

2. Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal

3. Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal

4. REQUIMTE/LAQV—Associated Laboratory for Green Chemistry, ISEP, Polytechnique of Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal

5. REQUIMTE/LAQV—Associated Laboratory for Green Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal

6. Interdisciplinary Center of Marine and Environmental Research (CIIMAR), University of Porto, Terminal dos Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal

Abstract

Glioblastoma (GBM) is the most common and deadly primary malignant brain tumor. Current therapies are insufficient, and survival for individuals diagnosed with GBM is limited to a few months. New GBM treatments are urgent. Polymeric nanoparticles (PNs) can increase the circulation time of a drug in the brain capillaries. Polymersomes (PMs) are PNs that have been described as having attractive characteristics, mainly due to their stability, prolonged circulation period, biodegradability, their ability to sustain the release of drugs, and the possibility of surface functionalization. In this work, a poly(ethylene glycol)-ε-caprolactone (PEG-PCL) copolymer was synthesized and PMs were prepared and loaded with an hydrolytic instable compound, previously synthesized by our research team, the 3,6-bis(2,3,4,6-tetra-O-acetyl-β-glucopyranosyl)xanthone (XGAc), with promising cytotoxicity on glioblastoma cells (U-373 MG) but also on healthy cerebral endothelial cells (hCMEC/D3). The prepared PMs were spherical particles with uniform morphology and similar sizes (mean diameter of 200 nm) and were stable in aqueous suspension. The encapsulation of XGAc in PMs (80% encapsulation efficacy) protected the healthy endothelial cells from the cytotoxic effects of this compound, while maintaining cytotoxicity for the glioblastoma cell line U-373 MG. Our studies also showed that the prepared PMs can efficiently release XGAc at intratumoral pHs.

Funder

Fundação para a ciência e a Tecnologia

the Associate Laboratory Institute for Health and Bioeconomy-i4HB

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3