Rapid Quantification of Infectious Cucumber green mottle mosaic virus in Watermelon Tissues by PMA Coupled with RT-qPCR

Author:

Chai Ali,Wang Quancheng,Kang Huajun,Yan Leiyan,Huang Yunping,Shi Yanxia,Xie Xuewen,Li Lei,Fan Tengfei,Wang Yuhong,Li Baoju

Abstract

Cucumber green mottle mosaic virus (CGMMV) belongs to the Tobamovirus genus and is an important quarantine virus of cucurbit crops. Seedborne transmission is one of the principal modes for CGMMV spread, and effective early detection is helpful to prevent the occurrence of the disease. Quantitative real-time reverse-transcription PCR (RT-qPCR) is a sensitive and rapid method for detecting CGMMV nucleic acids, but it cannot distinguish between infectious and noninfectious viruses. In the present work, a propidium monoazide (PMA) assisted RT-qPCR method (PMA-RT-qPCR) was developed to rapidly distinguish infectious and inactive CGMMV. PMA is a photoactive dye that can selectively react with viral RNA released or inside inactive CGMMV virions but not viral RNA inside active virions. The formation of PMA-RNA conjugates prevents PCR amplification, leaving only infectious virions to be amplified. The primer pair cp3-1F/cp3-1R was designed based on the coat protein (cp) gene for specific amplification of CGMMV RNA by RT-qPCR. The detection limit of the RT-qPCR assay was 1.57 × 102 copies·μL−1. PMA at 120 μmol·L−1 was suitable for the selective quantification of infectious CGMMV virions. Under optimal conditions, RT-qPCR detection of heat-inactivated CGMMV resulted in Ct value differences larger than 16 between PMA-treated and non-PMA-treated groups, while Ct differences less than 0.23 were observed in the detection of infectious CGMMV. For naturally contaminated watermelon leaf, fruit and seedlot samples, infectious CGMMV were quantified in 13 out of the 22 samples, with infestation levels of 102~105 copies·g−1. Application of this assay enabled the selective detection of infectious CGMMV and facilitated the monitoring of the viral pathogen in watermelon seeds and tissues, which could be useful for avoiding the potential risks of primary inoculum sources.

Funder

National Natural Science Foundation of China

the Innovation Project of Improved Varieties and Methods of Melons and Vegetables of Ningbo Academy of Agricultural Sciences

Publisher

MDPI AG

Subject

Virology,Infectious Diseases

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3