Implementation of ANN Controller Based UPQC Integrated with Microgrid

Author:

Mahar HinaORCID,Munir Hafiz MudasirORCID,Soomro Jahangir BadarORCID,Akhtar FaheemORCID,Hussain Rashid,Elnaggar Mohamed F.ORCID,Kamel SalahORCID,Guerrero Josep M.ORCID

Abstract

This study discusses how to increase power quality by integrating a unified power quality conditioner (UPQC) with a grid-connected microgrid for clean and efficient power generation. An Artificial Neural Network (ANN) controller for a voltage source converter-based UPQC is proposed to minimize the system’s cost and complexity by eliminating mathematical operations such as a-b-c to d-q-0 translation and the need for costly controllers such as DSPs and FPGAs. In this study, nonlinear unbalanced loads and harmonic supply voltage are used to assess the performance of PV-battery-UPQC using an ANN-based controller. Problems with voltage, such as sag and swell, are also considered. This work uses an ANN control system trained with the Levenberg-Marquardt backpropagation technique to provide effective reference signals and maintain the required dc-link capacitor voltage. In MATLAB/Simulink software, simulations of PV-battery-UPQC employing SRF-based control and ANN-control approaches are performed. The findings revealed that the proposed approach performed better, as presented in this paper. Furthermore, the influence of synchronous reference frame (SRF) and ANN controller-based UPQC on supply currents and the dc-link capacitor voltage response is studied. To demonstrate the superiority of the suggested controller, a comparison of percent THD in load voltage and supply current utilizing SRF-based control and ANN control methods is shown.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3