Abstract
Porous ceramics are often produced by using pyrolisable additives to generate porosity during the sintering step. The examination of the experimental microstructures of the resulted porous ceramics revealed certain levels of anisotropy, even if the original soft additives used as pore forming agents were spherical. The paper shows that anisotropic porosity may result in ceramics when using equiaxed soft polymeric additives for generating porosity, due to the deformation of soft inclusions during the pressing step. It has been found, by means of analytical and numerical calculations, that uniaxial pressing of a mixture of solid particles with contrasting mechanical properties (hard/soft) generates modifications in the shape of the soft phase. As a result, anisotropic shape distribution of the soft inclusions in the green ceramic body and elongated porosity in the final ceramic product are obtained. The elongated pores are statistically oriented with the major axes perpendicular to the pressing direction and will generate anisotropy-related functional properties. Analytical calculations indicate the deformation of a single soft inclusion inside a continuum solid. Further, by finite element simulations performed in 2D planes along the transversal and radial directions of the pressing axis, a bimodal angular distribution of the long axes of the soft inclusions has been found.
Funder
Unitatea Executiva Pentru Finantarea Invatamantului Superior a Cercetarii Dezvoltarii si Inovarii
Subject
General Materials Science
Reference27 articles.
1. Processing and properties of advanced porous ceramics: An application based review;Hammel;Ceram. Int.,2014
2. Fabrication, modelling and use of porous ceramics for ultrasonic transducer applications;Levassort;J. Electroceram.,2007
3. Porous Piezoceramics: Theory, Technology, and Properties;Rybyanets;IEEE Trans. Ultrason. Ferroel. Freq. Control.,2011
4. Porous ferroelectric materials for energy technologies: Current status and future perspectives;Yan;Energy Environ. Sci.,2021
5. Effect of shape and volume fraction of closed pores on dielectric, elastic and electromechanical properties of dielectric and piezoelectric ceramics—A theoretical approach;Banno;Amer. Ceram. Soc. Bull.,1987
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献