Abstract
The index mechanical properties, strength, and stiffness parameters of rock materials (i.e., uniaxial compressive strength, c, ϕ, E, and G) are critical factors in the proper geotechnical design of rock structures. Direct procedures such as field surveys, sampling, and testing are used to estimate these properties, and are time-consuming and costly. Indirect methods have gained popularity in recent years due to their time-saving and highly accurate results, which are comparable to those obtained through direct approaches. This study presents a procedure for establishing a deep learning-based predictive model (DNN) for obtaining the geomechanical characteristics of marlstone samples that have been recovered from the South Pars region of southwest Iran. The model was implemented on a dataset resulting from the execution of numerous geotechnical tests and the evaluation of the geotechnical parameters of a total of 120 samples. The applied model was verified by using benchmark learning classifiers (e.g., Support Vector Machine, Logistic Regression, Gaussian Naïve Bayes, Multilayer Perceptron, Bernoulli Naïve Bayes, and Decision Tree), Loss Function, MAE, MSE, RMSE, and R-square. According to the results, the proposed DNN-based model led to the highest accuracy (0.95), precision (0.97), and the lowest error rate (MAE = 0.13, MSE = 0.11, and RMSE = 0.17). Moreover, in terms of R2, the model was able to accurately predict the geotechnical indices (0.933 for UCS, 0.925 for E, 0.941 for G, 0.954 for c, and 0.921 for φ).
Subject
General Materials Science
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献