Reliability Analysis of Flip-Chip Packaging GaN Chip with Nano-Silver Solder BUMP

Author:

Yan Lei1,Liu Peisheng1ORCID,Xu Pengpeng1,Tan Lipeng1,Zhang Zhao1

Affiliation:

1. Jiangsu Key Laboratory of ASIC Design, School of Information Science and Technology, Nantong University, Nantong 226019, China

Abstract

Gallium nitride (GaN) power devices have many benefits, including high power density, small footprint, high operating voltage, and excellent power gain capability. However, in contrast to silicon carbide (SiC), its performance and reliability can be negatively impacted by its low thermal conductivity, which can cause overheating. Hence, it is necessary to provide a reliable and workable thermal management model. In this paper, a model of a flip-chip packing (FCP) GaN chip was established, and it was assigned to the Ag sinter paste structure. The different solder bumps and under bump metallurgy (UBM) were considered. The results indicated that the FCP GaN chip with underfill was a promising method because it not only reduced the size of the package model but also reduced thermal stress. When the chip was in operation, the thermal stress was about 79 MPa, only 38.77% of the Ag sinter paste structure, lower than any of the GaN chip packaging methods currently in use. Moreover, the thermal condition of the module often has little to do with the material of the UBM. Additionally, nano-silver was found to be the most suitable bump material for FCP GaN chip. Temperature shock experiments were also conducted with different UBM materials when nano-silver was used as bump. It was found that Al as UBM is a more reliable option.

Funder

Joint Project of Nantong University and Jiangsu JieJie Microelectronics Co., Ltd.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3