Preface to State-of-the-Art in Real-Time Air Quality Monitoring through Low-Cost Technologies
Author:
Affiliation:
1. Department for Sustainability, Brindisi Research Center, ENEA—Italian National Agency for New Technologies, Energy and Sustainable Economic Development, SS. 7 Appia, km 706, 72100 Brindisi, Italy
Abstract
Publisher
MDPI AG
Subject
Atmospheric Science,Environmental Science (miscellaneous)
Link
https://www.mdpi.com/2073-4433/14/3/554/pdf
Reference8 articles.
1. Park, D., Yoo, G.-W., Park, S.-H., and Lee, J.-H. (2021). Assessment and Calibration of a Low-Cost PM2.5 Sensor Using Machine Learning (HybridL STM Neural Network): Feasibility Study to Build an Air Quality Monitoring System. Atmosphere, 12.
2. Suriano, D., and Penza, M. (2022). Assessment of the Performance of a Low-Cost Air Quality Monitor in an Indoor Environment through Different Calibration Models. Atmosphere, 13.
3. Masri, S., Rea, J., and Wu, J. (2022). Use of Low-Cost Sensors to Characterize Occupational Exposure to PM2.5 Concentrations Inside an Industrial Facility in Santa Ana, CA: Results from a Worker- and Community-Led Pilot Study. Atmosphere, 13.
4. Haugen, M.J., Singh, A., Bousiotis, D., Pope, F.D., and Boies, A.M. (2022). Differentiating Semi-Volatile and Solid Particle Events Using Low-Cost Lung-Deposited Surface Area and Black Carbon Sensors. Atmosphere, 13.
5. Schalm, O., Carro, G., Lazarov, B., Jacobs, W., and Stranger, M. (2022). Reliability of Lower-Cost Sensors in the Analysis of Indoor Air Quality on Board Ships. Atmosphere, 13.
Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Blockchain and IoT integration for secure short-term and long-term air quality monitoring system using optimized neural network;Environmental Science and Pollution Research;2024-05-31
2. Air Quality Class Prediction Using Machine Learning Methods Based on Monitoring Data and Secondary Modeling;Atmosphere;2024-04-30
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3