Screening of Hydroxyapatite Biomaterials for Alveolar Augmentation Using a Rat Calvaria Critical-Size Defect Model: Bone Formation/Maturation and Biomaterials Resolution

Author:

Susin Cristiano,Lee JaebumORCID,Fiorini Tiago,Koo Ki-Tae,Schüpbach Peter,Finger Stadler AmandaORCID,Wikesjö Ulf ME

Abstract

Background: Natural (bovine-/equine-/porcine-derived) or synthetic hydroxyapatite (HA) biomaterials appear to be the preferred technologies among clinicians for bone augmentation procedures in preparation for implant dentistry. The aim of this study was to screen candidate HA biomaterials intended for alveolar ridge augmentation relative to their potential to support local bone formation/maturation and to assess biomaterial resorption using a routine critical-size rat calvaria defect model. Methods: Eighty adult male Sprague Dawley outbred rats obtained from a approved-breeder, randomized into groups of ten, were used. The calvaria defects (ø8 mm) either received sham surgery (empty control), Bio-Oss (bovine HA/reference control), or candidate biomaterials including bovine HA (Cerabone, DirectOss, 403Z013), and bovine (403Z014) or synthetic HA/ß-TCP (Reprobone, Ceraball) constructs. An 8 wk healing interval was used to capture the biomaterials’ resolution. Results: All biomaterials displayed biocompatibility. Strict HA biomaterials showed limited, if any, signs of biodegradation/resorption, with the biomaterial area fraction ranging from 22% to 42%. Synthetic HA/ß-TCP constructs showed limited evidence of biodegradation/erosion (biomaterial area fraction ≈30%). Mean linear defect closure in the sham-surgery control approximated 40%. Mean linear defect closure for the Bio-Oss reference control approximated 18% compared with 15–35% for the candidate biomaterials without significant differences between the controls and candidate biomaterials. Conclusions: None of the candidate HA biomaterials supported local bone formation/maturation beyond the native regenerative potential of this rodent model, pointing to their limitations for regenerative procedures. Biocompatibility and biomaterial dimensional stability could suggest their potential utility as long-term defect fillers.

Funder

Nobel Biocare

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

Reference31 articles.

1. Surgical protocols for ridge preservation after tooth extraction. A systematic review;Vignoletti;Clin. Oral Implants Res.,2012

2. Interventions for replacing missing teeth: Alveolar ridge preservation techniques for dental implant site development;Atieh;Cochrane Database Syst. Rev.,2015

3. Alveolar ridge and maxillary sinus augmentation using rhBMP-2: A systematic review;Freitas;Clin. Implant Dent. Relat. Res.,2015

4. Sampath, K.T., and Vukicevic, S. BMPs in dental medicine: Promises and challenges. Bone Morphogenetic Proteins: Systemic Biology Regulators, 2017.

5. A prospective study of implants placed in augmented sinuses with minimal and moderate residual crestal bone: Results after 1 to 5 years;Urban;Int. J. Oral Maxillofac. Implants,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3