Using the Magnetotelluric Method for Detecting Aquifer Failure Characteristics under High-Intensity Mining of Thick Coal Seams

Author:

Bai ErhuORCID,Guo Wenbing,Zhang Dongsheng,Tan Yi,Guo MingjieORCID,Zhao Gaobo

Abstract

In the ecologically fragile mining area of northwest China, high-intensity mining has seriously affected the aquifer and surface eco-environment. In order to better implement water-preserved mining in ecologically fragile areas, the aquifer failure characteristics should be first detected accurately; therefore, it is necessary to find a convenient and fast detection method. Based on the analysis of the basic principles and influencing factors of the magnetotelluric (MT) method, the feasibility of using the MT method to detect aquifer failure is verified by testing the mined area with MT detection and field borehole measurement. Subsequently, the failure characteristics of overburden and unconsolidated aquifers under high-intensity mining are studied by MT detection and physical simulation. By comparing the physical simulation with the field measurement from the aspects of the maximum surface subsidence, interval of periodic weighting and step cracks, the reliability of the height of the water flowing fracture zone and caving zone obtained from physical simulation is verified. The analysis from MT detection and physical simulation shows that the results of the two methods are in accord with each other, which further confirms that the MT method can be used to detect the failure of overburdened structures and aquifers. The penetrating fractures are the main channel for the downward seepage of water resources, which is caused by the “two-zone” of overburden model and located in the “dimple” shape in the apparent resistivity (AR) isogram. It can provide a reference and technical support for the corresponding new water-preserved mining technology and the construction of digital mines.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3