Application of Spectral Clustering Algorithm to ES-MDA with DCT for History Matching of Gas Channel Reservoirs

Author:

Kim Sungil,Lee KyungbookORCID

Abstract

History matching is a calibration of reservoir models according to their production history. Although ensemble-based methods (EBMs) have been researched as promising history matching methods, reservoir parameters updated using EBMs do not have ideal geological features because of a Gaussian assumption. This study proposes an application of spectral clustering algorithm (SCA) on ensemble smoother with multiple data assimilation (ES-MDA) as a parameterization technique for non-Gaussian model parameters. The proposed method combines discrete cosine transform (DCT), SCA, and ES-MDA. After DCT is used to parameterize reservoir facies to conserve their connectivity and geometry, ES-MDA updates the coefficients of DCT. Then, SCA conducts a post-process of rock facies assignment to let the updated model have discrete values. The proposed ES-MDA with SCA and DCT gives a more trustworthy history matching performance than the preservation of facies ratio (PFR), which was utilized in previous studies. The SCA considers a trend of assimilated facies index fields, although the PFR classifies facies through a cut-off with a pre-determined facies ratio. The SCA properly decreases uncertainty of the dynamic prediction. The error rate of ES-MDA with SCA was reduced by 42% compared to the ES-MDA with PFR, although it required an extra computational cost of about 9 min for each calibration of an ensemble. Consequently, the SCA can be proposed as a reliable post-process method for ES-MDA with DCT instead of PFR.

Funder

Korea Institute of Geoscience and Mineral Resources

Korea Institute of Energy Technology Evaluation and Planning

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3