Unique SMYD5 Structure Revealed by AlphaFold Correlates with Its Functional Divergence

Author:

Zhang Yingxue,Alshammari Eid,Sobota Jacob,Yang Alexander,Li Chunying,Yang ZheORCID

Abstract

SMYD5 belongs to a special class of protein lysine methyltransferases with an MYND (Myeloid-Nervy-DEAF1) domain inserted into a SET (Suppressor of variegation, Enhancer of Zeste, Trithorax) domain. Despite recent advances in its functional characterization, the lack of the crystal structure has hindered our understanding of the structure-and-function relationships of this most unique member of the SMYD protein family. Here, we demonstrate the reliability of using AlphaFold structures for understanding the structure and function of SMYD5 by comparing the AlphaFold structures to the known crystal structures of SMYD proteins, using an inter-residue distance maps-based metric. We found that the AlphaFold confidence scores are inversely associated with the refined B-factors and can serve as a structural indicator of conformational flexibility. We also found that the N-terminal sequence of SMYD5, predicted to be a mitochondrial targeting signal, contains a novel non-classical nuclear localization signal. This sequence is structurally flexible and does not have a well-defined conformation, which might facilitate its recognition for SMYD5’s cytonuclear transport. The structure of SMYD5 is unique in many aspects. The “crab”-like structure with a large negatively charged cleft provides a potential binding site for basic molecules such as protamines. The less positively charged MYND domain is associated with the undetectable DNA-binding ability. The most surprising feature is an incomplete target lysine access channel that lacks the evolutionarily conserved tri-aromatic arrangement, being associated with the low H3/H4 catalytic activity. This study expands our understanding of the SMYD protein family from a classical two-lobed structure to a structure of its own kind, being as a fundamental determinant of its functional divergence.

Funder

National Institute of Health

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3